Wildland Resources Faculty Publications
Wildland Resources Faculty Publications Recent documents in Wildland Resources Faculty Publications
- Comprehensive Assessment of Restoration Seedings to Improve Restoration Successby Kari E. Veblen et al. on February 24, 2025 at 11:12 pm
Restoration projects rely on seedling establishment and persistence to foster invasion resistance and improve resilience to environmental stress and disturbance (James et al. 2010; Chambers et al. 2014). However, few studies have comprehensively evaluated the landscape-level performance of seeded species or the factors that control their short-term establishment and long-term persistence (Hardegree et al. 2011; Knutson et al. 2014). Assessing the role of these factors across physiographic regions that experience high temporal and spatial variability in environmental conditions will reveal the effectiveness of various pre-seeding land treatments and enhance our capacity to select appropriate restoration species for specific ecological sites based on their seeding establishment and persistence.
- Change in Dominance Determines Herbivore Effects on Plant Biodiversityby Sally E. Koerner et al. on February 24, 2025 at 11:12 pm
Herbivores alter plant biodiversity (species richness) in many of the world's ecosystems, but the magnitude and the direction of herbivore effects on biodiversity vary widely within and among ecosystems. One current theory predicts that herbivores enhance plant biodiversity at high productivity but have the opposite effect at low productivity. Yet, empirical support for the importance of site productivity as a mediator of these herbivore impacts is equivocal. Here, we synthesize data from 252 large-herbivore exclusion studies, spanning a 20-fold range in site productivity, to test an alternative hypothesis–that herbivore-induced changes in the competitive environment determine the response of plant biodiversity to herbivory irrespective of productivity. Under this hypothesis, when herbivores reduce the abundance (biomass, cover) of dominant species (for example, because the dominant plant is palatable), additional resources become available to support new species, thereby increasing biodiversity. By contrast, if herbivores promote high dominance by increasing the abundance of herbivory-resistant, unpalatable species, then resource availability for other species decreases reducing biodiversity. We show that herbivore-induced change in dominance, independent of site productivity or precipitation (a proxy for productivity), is the best predictor of herbivore effects on biodiversity in grassland and savannah sites. Given that most herbaceous ecosystems are dominated by one or a few species, altering the competitive environment via herbivores or by other means may be an effective strategy for conserving biodiversity in grasslands and savannahs globally.
- Determining Spatial Responses of Fishers (Pakania Pennanti) to Mechanical Treatments of Forest Stands for Fuel Reductionby Tessa R. Smith et al. on February 7, 2025 at 4:17 pm
Historical forestry practices (e.g., fire suppression, heavy timber logging) have contributed to a discernable change in stand composition of western forests in the U.S., which now comprise a tinderbox mixture of increased surface and ladder fuels, dense stands, and fire-intolerant species. Forest managers are mitigating this concern by implementing silviculture practices (e.g., selective logging, thinning, prescribed burning) to reduce fuel loads and improve stand resiliency. Concern for habitat specialists, such as the fisher (Pekania pennanti), have arisen as they may be negatively influenced in the short-term by modifications to their environment that are needed to ensure long-term habitat persistence. To address this issue, we initiated an 8-year study in 2010 in Ashland, Oregon, to determine the behavioral response of fishers to fuel reduction treatments applied in forested stands. We measured the distance of each location from eight GPS-collared fishers to all treatments before and after they were treated within each home range, and performed three statistical tests for robustness, including a multi-response permutation procedure, chi-squared test of independence, and a Kolmogorov–Smirnov assessment. We found high variation among individuals to the tolerance of habitat manipulation. Using effect size to interpret the magnitude of fisher response to pre- and post-treatment effects, 1 fisher showed a moderate negative relationship to fuel reduction treatments, 5 exhibited a weak negative response, and 2 had a weak positive association with treatments. We used analysis of variance on the three fishers exhibiting the largest effect sizes to treatment disturbance, and used treatment, temporal, and habitat covariates to explore whether these factors influenced behavioral differences. Treatment season and vegetation class were important factors influencing response distance in the pre-treatment period. Post-treatment variables eliciting a negative treatment response were treatment season and treatment size, and results were slightly different when parsing out individual effects compared to a pooled sample set. Our findings suggested that seasonal timing and the location of management activities could influence fisher movement throughout their home range, but it was largely context-dependent based on the perceived risks or benefits to individuals.
- Spatiotemporal Patterns of Chlorophyll-a Concentration in a Hypersaline Lake Using High Temporal Resolution Remotely Sensed Imageryby R. Douglas Ramsey et al. on February 4, 2025 at 11:59 pm
The Great Salt Lake (GSL) is the largest saline lake in the Western Hemisphere. It supports billion-dollar industries and recreational activities, and is a vital stopping point for migratory birds. However, little is known about the spatiotemporal variation of phytoplankton biomass in the lake that supports these resources. Spectral reflectance provided by three remote sensing products was compared relative to their relationship with field measurements of chlorophyll a (Chl a). The MODIS product MCD43A4 with a 500 m spatial resolution provided the best overall ability to map the daily distribution of Chl a. The imagery indicated significant spatial variation in Chl a, with low concentrations in littoral areas and high concentrations in a nutrient-rich plume coming out of polluted embayment. Seasonal differences in Chl a showed higher concentrations in winter but lower in summer due to heavy brine shrimp (Artemia franciscana) grazing pressure. Twenty years of imagery revealed a 68% increase in Chl a, coinciding with a period of declining lake levels and increasing local human populations, with potentially major implications for the food web and biogeochemical cycling dynamics in the lake. The MCD43A4 daily cloud-free images produced by 16-day temporal composites of MODIS imagery provide a cost-effective and temporally dense means to monitor phytoplankton in the southern (47% surface area) portion of the GSL, but its remaining bays could not be effectively monitored due to shallow depths, and/or plankton with different pigments given extreme hypersaline conditions.
- Changes in Climate and Their Implications for Cattle Nutrition and Managementby Bashiri Iddy Muzzo et al. on January 31, 2025 at 10:58 pm
Climate change is a global challenge that impacts rangeland and pastureland landscapes by inducing shifts in temperature variability, precipitation patterns, and extreme weather events. These changes alter soil and plant conditions, reducing forage availability and chemical composition and leading to nutritional stress in cattle. This stress occurs when animals lack adequate water and feed sources or when these resources are insufficient in quantity, composition, or nutrient balance. Several strategies are essential to address these impacts. Genetic selection, epigenetic biomarkers, and exploration of epigenetic memories present promising avenues for enhancing the resilience of cattle populations and improving adaptation to environmental stresses. Remote sensing and GIS technologies assist in locating wet spots to establish islands of plant diversity and high forage quality for grazing amid ongoing climate change challenges. Establishing islands of functional plant diversity improves forage quality, reduces carbon and nitrogen footprints, and provides essential nutrients and bioactives, thus enhancing cattle health, welfare, and productivity. Real-time GPS collars coupled with accelerometers provide detailed data on cattle movement and activity, aiding livestock nutrition management while mitigating heat stress. Integrating these strategies may offer significant advantages to animals facing a changing world while securing the future of livestock production and the global food system.
Contact

Site Designed by Kite Media