BRIGHAM YOUNG UNIVERSITY

Hydrologic Response to Mechanical Shredding in a Juniper Woodland in Utah

Wildlife and Wildlands Conservation

Nathan L. Cline^a, Bruce A. Roundy^a, Fredrick Pierson^b, Patrick Kormos^b and C. Jason Williams^b Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT. a and Northwest Watershed Research Station, ARS Boise, ID. b

Goal

To discover the hydrologic impacts of mechanical shredding

Background

- What: Range managers employ tree reduction methods, such as mechanical shredding (or Bull Hog ®), to improve ecological
- . Why: The method avoids the risks associated with other methods and the resulting mulch residue is thought to protect soils from
- How Much: More than 10,000 ha shredded in Utah since 2004.
- Questions remain concerning the hydrologic effects of tracks and mulch residues that are left behind by the vehicle

Tire tracks

Mulch residue

Objectives

- Measure infiltration rates and sediment yields on hare and residue-covered microsites
- Measure compaction of tire tracks
- Measure infiltration and sediment rates of tracked and untracked microsites

Methods

Location: Onaqui Mountains, UT

- lat 40°12'46"N, long 112°28'17"W
- Aspect: North Dominate Vegetation
- Utah juniper (pre-treatment)
- Black sagebrush
- Bluebunch wheatgrass Sandburg's wheatgrass

With Residue vs without residue

- · Percent residue cover: Point frame (7 points on 15 transects)
- . Microsite comparison: interspace and bare interspace
- Sediment yield as a function of percent residue

Mechanical Shredding (BullHog®)

Trees shredded in the fall of 2006 using a Tigercat M726F Mulcher®

Tracks covered 15% of hill slope

Study Design

- · Soil resistance measurements
 - Summer 2008
 - 7 & 8 points along 2 transects Nearest 4 microsites per point
- Simulated rainfall
- Spring 2008
- Randomized block
- Five blocks Ten plots per block
- Plot dimension: 0.5 m²

Microsites

Data Analysis

Rain simulations

45-minute simulation Collect runoff in timed intervals (102 mm/hr)

45-minute simulation Collect runoff in timed

Rain Simulator

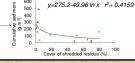
- Mever and Harmon
- (1979) simulator 80100 Veejet nozzle

Tracked vs Untracked

- · Soil resistance: Fieldscout SC900 ® cone penetrometer
- Microsites comparison: Juniper mound shrub mound, grass interspace, and bare interspace

Effect of residue

Infiltration and sediment


and decrease sediment yield?

Does tree residue increase infiltration

- No runoff on residue -covered plots during dry run.
- Residue for bare interspace significantly (P < 0.05) raised final and minimal infiltration rates.
- Sediment was significantly (P < 0.05) lower with residue cover compared to without on bare interspace.
- Residue bare interspace was similar to grass interspace.

Wet run (soil initially wet)	Grass inte	erspace	Bare interspace			
wetruii (soii iiilialiy wet)	No residue	residue	No residue	residue		
Number of plots out of five with runoff	5	3	5	4		
Final infiltration (mm•h-1)	66.1 a	67.3 a	26.7 b	81.9 a		
Minimum infiltration (mm•h-1)	65.4 a	62.7 ab	24.0 b	78.1 a		
Cumulative sediment (g•m-2)	133 b	83.8 b	313 a	38.6 b		
	•					

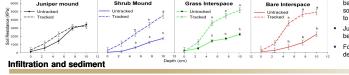
Sediment - residue cover regression

- The best fit non-linear regression was significant (P = 0.0128).
- As residue cover increases above 20%. cumulative sediment decreases

Effects of tracks

Soil resistance: Reneated measures analysis

Simulated rainfall: Mixed model analysis

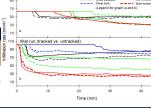

Fixed factors: microsite and treatment

Best-fit non-linear regression: Tablecurve ® 2D

Random factor: Block

Soil resistance

Does tracking result in Compaction?



- Shrub mound, grass interspace, and bare interspace have significantly higher soil resistance on tracked soils compared to untracked soils from 5 to 10 cm.
- Juniper mound showed little difference between tracked and untracked soils.
- For all plots, soil resistance increased as

Does tracking reduce infiltration and increase sediment yield?

	Dry Run (soil initially dry)	Juniper mound		Grass	Grass interspace		Bare interspace					
	Dry Hull (soil lilitally dry)	Untracked	Tracked	Untrack	tracked Tracked		Untracked		Tracked			
	Number of plots out of five with runoff	3	3	3		3	5		5			-
	Cumulative sediment (g·m-2)	29.2 a	37.6 a	16.1	a 77	.7 a	62.) a	83.5 a			÷
	Wet run (soil initially wet)	Juniper mound		Shrub n	Shrub mound G		rass interspace		e B	Bare interspace		Ė
	wetruii (Soii ii iitialiy wet)	Untracked	Tracked	Untracked	Tracked	Unti	racked	Track	ed Unti	racked	Tracked	ate
	Number of plots out of five with runoff	5	5	3	4		5	5		5	5	Š
	Final infiltration (mm+h-1)	85.7 a	74.2 a	85.0 a	79.3 a	66	3.1 a	39.8	b 26	6.7 b	24.2 b	養
	Minimum infiltration (mm+h-1)	71.7 a	62.6 a	83.0 a	77.0 a	65	5.4 b	37.7	a 24	1.0 b	20.1 b	ĕ
-	Cumulative sediment (g•m·2)	48.8 c	75.0 bc	20.9 c	70.5 bc	13	3 bc	211 8	ab 3	13 a	403 a	-

- Dry run (soil initially dry)
- Shrub mound did not have runoff
- Cumulative sediment was not different
- Wet run (Soil initially wet)
- Tracked grass interspace had lower infiltration rate than untracked grass interspace
- No other significant differences

Implications

- Mechanical shredding (or Bull Hog®) is a viable method of vegetation control where juniper trees have excluded understory vegetation.
- Site and temporal characteristics should always be considered when applying mechanical treatments as specific soil conditions may be associated with low infiltration
- During shredding, spread the mulch as much as possible

Literature Cited

Meyer, L. D., and W. C. Harmon. 1979. Multipleintensity rainfall simulator for erosion research on row sideslopes. Transactions of the ASAE, 22:100

Partnerships and Funding

This project was undertaken in partnership with the Northwest Watershed Research Station (USDA-ARS) as part of the Sagebrush Steppe Treatment Evaluation Project (SageSTEP), funded by the United States Joint Fire Science Program

